3,710 research outputs found

    Role of center vortices in chiral symmetry breaking in SU(3) gauge theory

    Get PDF
    We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been observed to generate chiral symmetry breaking and dominate the infrared behavior of the quark propagator. In contrast, we report a weak dependence on the vortex content of the gauge configurations, including the survival of dynamical mass generation on configurations with vanishing string tension.Comment: 8 pages, 9 figure

    A Prediction of Observable Rotation in the ICM of Abell 3266

    Full text link
    We present a numerical Hydro+N-body model of A3266 whose X-ray surface brightness, temperature distribution, and galaxy spatial and velocity distribution data are consistent with the A3266 data. The model is an old (~3 Gyr), off-axis merger having a mass ratio of ~2.5:1. The less massive subcluster in the model is moving on a trajectory from southwest to northeast passing on the western side of the dominant cluster while moving into the plane of the sky at ~45 degrees. Off-axis mergers such as this one are an effective mechanism for transferring angular momentum to the intracluster medium (ICM), making possible a large scale rotation of the ICM. We demonstrate here that the ICM rotation predicted by our fully 3-dimensional model of A3266 is observable with current technology. As an example, we present simulated observations assuming the capabilities of the high resolution X-ray spectrometer (XRS) which was to have flown on Astro-E.Comment: 9 pages, 7 postscript figures, Fig. 3 and 6 are color postscript, Accepted for publication in the Astrophysical Journa

    A Student-Led Methodology for Evaluating Curricular Redundancy

    Get PDF
    Background: Curricular redundancy can be a significant problem for any educational curriculum. Redundancy can be both desirable and undesirable, but differentiating the two can be quite challenging. Further, pinpointing undesirable redundancy and quantifying it so as to produce an estimate of inefficiency is even more difficult. Purpose: The purpose of this research is to describe a student-led strategy for evaluating redundancy in a highly integrated medical school curriculum. It is our hope that the methodology presented here will serve as a useful evaluation model for persons attempting similar work in various educational arenas. Setting: A highly-integrated medical school at a large public university. Intervention: This research did not require an intervention. Research Design: We identified two advanced medical students and asked them to identify redundant material across the first two years of the medical school curriculum. The students had to operationalize ‘redundancy’, develop an evaluation plan/framework, and evaluate the extent to which undesirable redundancy was prevalent in the current curriculum. Data Collection and Analysis: Students reviewed course syllabi, notes, and materials and documented the amount of redundant material they found in the curriculum. Findings: A total of approximately 167 hours, or 8.35 weeks, could be eliminated from the curriculum; the vast majority of the redundancy occurred as a result of small group activities

    High efficiency of graded index photonic crystal as an input coupler

    Get PDF
    Cataloged from PDF version of article.A graded index photonic crystal (GRIN PC) configuration was placed at the input side of a photonic crystal waveguide (PCW) in order to efficiently couple the light waves into the waveguide. We compared the transmission efficiencies of light in the absence and presence of the GRIN PC structure. We report a significant improvement in coupling when the GRIN PC is incorporated with the PCW. The intensity profiles were obtained by carrying out the experiments at microwave frequencies. Finite difference time domain based simulations were found to be in good agreement with our experimental results

    Preconditioning Maximal Center Gauge with Stout Link Smearing in SU(3)

    Get PDF
    Center vortices are studied in SU(3) gauge theory using Maximal Center Gauge (MCG) fixing. Stout link smearing and over-improved stout link smearing are used to construct a preconditioning gauge field transformation, applied to the original gauge field before fixing to MCG. We find that preconditioning successfully achieves higher gauge fixing maxima. We observe a reduction in the number of identified vortices when preconditioning is used, and also a reduction in the vortex-only string tension.Comment: 9 pages, 4 figure

    Adaptive Resolution Simulation of Liquid Water

    Full text link
    We present a multiscale simulation of liquid water where a spatially adaptive molecular resolution procedure allows for changing on-the-fly from a coarse-grained to an all-atom representation. We show that this approach leads to the correct description of all essential thermodynamic and structural properties of liquid water.Comment: 4 pages, 3 figures; changed figure

    The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein

    Get PDF
    Many bacteria contain large cyclic diguanylate (c-di-GMP) signaling networks made of diguanylate cyclases (DGCs) and phosphodiesterases that can direct cellular activities sensitive to c-di-GMP levels. While DGCs synthesize c-di-GMP, many DGCs also contain an autoinhibitory site (I-site) that binds c-di-GMP to halt excess production of this small molecule, thus controlling the amount of c-di-GMP available to bind to target proteins in the cell. Many DGCs studied to date have also been found to signal for a specific c-di-GMP-related process, and although recent studies have suggested that physical interaction between DGCs and target proteins may provide this signaling fidelity, the importance of the I-site has not yet been incorporated into this model. Our results from Pseudomonas fluorescens indicate that mutation of residues at the I-site of a DGC disrupts the interaction with its target receptor. By creating various substitutions to a DGC\u27s I-site, we show that signaling between a DGC (GcbC) and its target protein (LapD) is a combined function of the I-site-dependent protein-protein interaction and the level of c-di-GMP production. The dual role of the I-site in modulating DGC activity as well as participating in protein-protein interactions suggests caution in interpreting the function of the I-site as only a means to negatively regulate a cyclase. These results implicate the I-site as an important positive and negative regulatory element of DGCs that may contribute to signaling specificity

    The beta function of the multichannel Kondo model

    Full text link
    The beta function of the multichannel Kondo model is calculated exactly in the limit of large spin N and channel number M=gamma*N, with constant gamma. There are no corrections in any finite order of 1/N. One zero is found at a finite coupling strength, showing directly the Non--Fermi liquid behavior of the model. This renormalization group flow allows to introduce a variational principle for the entropy, to obtain the low temperature thermodynamics. Such in particular the low temperature thermodynamics of the non--crossing approximation to the Kondo model becomes accessible.Comment: 4 page

    Rapid state purification protocols for a Cooper pair box

    Get PDF
    We propose techniques for implementing two different rapid state purification schemes, within the constraints present in a superconducting charge qubit system. Both schemes use a continuous measurement of charge (z) measurements, and seek to minimize the time required to purify the conditional state. Our methods are designed to make the purification process relatively insensitive to rotations about the x-axis, due to the Josephson tunnelling Hamiltonian. The first proposed method, based on the scheme of Jacobs [Phys. Rev. A 67, 030301(R) (2003)] uses the measurement results to control bias (z) pulses so as to rotate the Bloch vector onto the x-axis of the Bloch sphere. The second proposed method, based on the scheme of Wiseman and Ralph [New J. Phys. 8, 90 (2006)] uses a simple feedback protocol which tightly rotates the Bloch vector about an axis almost parallel with the measurement axis. We compare the performance of these and other techniques by a number of different measures.Comment: 14 pages, 14 figures. v2: Revised version after referee comments. Accepted for publication by Physical Review
    corecore